Small Deviations for Gaussian Markov Processes Under the Sup-Norm

نویسنده

  • Wenbo V. Li
چکیده

\. INTRODUCTION Let {X(t); 0 < t < 1} be a real-valued mean-zero Gaussian process, and let "||.||" be a semi-norm on the space of real functions on [0, 1]. The so called "small ball estimates" or "small deviation estimates" refer to the asymptotic behavior of This type of problem is quite delicate, and the asymptotic decay rate in (1.1), up to a constant, depends heavily on the process X(t) and the Let {X(t); 0 < t < 1} be a real-valued continuous Gaussian Markov process with mean zero and covariance s(s, t) = EX(s) X(t) = 0 for 0 0, H > 0 and G/H nondecreasing on the interval (0, 1). We show that In the critical case, i.e. this integral is infinite, we provide the correct rate (up to a constant) for log P(sup 0 < t < 1 |X(t)| < e) as e->0 under regularity conditions .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Logarithmic Level Comparison for Small Deviation Probabilities

Log-level comparisons of the small deviation probabilities are studied in three different but related settings: Gaussian processes under the L 2 norm, multiple sums motivated by tensor product of Gaussian processes, and various integrated fractional Brownian motions under the sup-norm.

متن کامل

ADK Entropy and ADK Entropy Rate in Irreducible- Aperiodic Markov Chain and Gaussian Processes

In this paper, the two parameter ADK entropy, as a generalized of Re'nyi entropy, is considered and some properties of it, are investigated. We will see that the ADK entropy for continuous random variables is invariant under a location and is not invariant under a scale transformation of the random variable. Furthermore, the joint ADK entropy, conditional ADK entropy, and chain rule of this ent...

متن کامل

Log-level Comparison for Small Deviation Probabilities

Log-level comparisons of the small deviation probabilities are studied in three different but related settings: Gaussian processes under the L2 norm, multiple sums motivated by tensor product of Gaussian processes, and various integrated fractional Brownian motions under the sup-norm. ∗Department of Mathematics, University of Idaho, Moscow, ID 83844-1103, [email protected]. Research partially ...

متن کامل

On the Lower Classes of Some Mixed Fractional Gaussian Processes with Two Logarithmic Factors

We introduce the fractional mixed fractional Brownian sheet and investigate the small ball behavior of its sup-norm statistic by establishing a general result on the small ball probability of the sum of two not necessarily independent joint Gaussian random vectors. Then, we state general conditions and characterize the sufficiency part of the lower classes of some statistics of the above proces...

متن کامل

Small Ball Probabilities for the Slepian Gaussian Fields

The d-dimensional Slepian Gaussian random field {S(t), t ∈ R+} is a mean zero Gaussian process with covariance function ES(s)S(t) = ∏d i=1 max(0, ai − |si − ti|) for ai > 0 and t = (t1, · · · , td) ∈ R+. Small ball probabilities for S(t) are obtained under the L2-norm on [0, 1]d, and under the sup-norm on [0, 1]2 which implies Talagrand’s result for the Brownian sheet. The method of proof for t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999